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Abstract

We investigate non-degenerate diffusion processes on an arbitrary manifold, the dynamics of
which arise from a principle of least action for a Lagrangian consisting of a kinetic term quadratic
in the forward drift of the process and a local potential. The equation governing the action emerges as
a stochastic Hamilton–Jacobi condition and is expressed in terms of the geometry determined by the
Levi-Civita connection of the diffusion tensor. It is argued that there are essentially two dynamical
structures for the rate of change of the drift in the presence of a local potential, consistent with
the requirement of time reversal symmetry. In both cases a conserved energy is identified. An
alternative wave function and associated operator description reveals a complex structure in the
dynamical equations, thus extending the earlier results of Nelson on the stochastic treatment of the
Schrödinger equation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we discuss a class of non-degenerate diffusion processes on an arbitrary
manifoldM that possess time-symmetric conservative dynamics derivable from a local po-
tential function onM. We present the functional forms of the dynamics explicitly and show
how these arise from a stochastic principle of least action for different choices of kinetic
Lagrangian. Our treatment is closely aligned to the development of stochastic mechanics ini-
tiated by Nelson[1,2]and extends this by discussing the general case of time-symmetric con-
servative dynamics, the nature of the conserved energy of the process, the associated wave
function and operator formalisms and emergent complex structures. Our analysis is carried
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out using the natural metrical geometry supplied by the inverse of the (non-degenerate)
contravariant diffusion tensor. Essentially, two distinct dynamical structures emerge, both
of which are derivable from a stochastic principle of least action. The relevant Lagrangian
consists of a kinetic part minus a local potential, and the two dynamical structures are tied to
the specification of the kinetic Lagrangian in terms of the forward drift of the process. The
notion of acceleration is not unique for a stochastic process, owing to the distinct notions
of forward and backward drift velocities and time derivatives that are conditioned with
respect to the past and future. In this respect the choice of dynamics amounts to a relation-
ship between the local potential and a specific choice of acceleration quantity that arises
as a combination of past or future conditioned time derivatives of the forward or backward
drifts. The dynamics can also be expressed as the (non-linear) stochastic Hamilton–Jacobi
equation for the action. In both cases the exponential of the action gives rise to a wave
function description and associated operator formalism in terms of which the dynamics
is linear. For one choice of kinetic Lagrangian the stochastic principle of least action is
known[1,2] to lead to diffusion dynamics equivalent to the Schrödinger wave equation of
quantum theory[3]. The remaining choice, although similar in appearance in terms of wave
function dynamics, is nevertheless distinct for a given potential, and has not been discussed
previously in the context of stochastic differential and quantum geometry. Although the
dynamical law is time-symmetric, in contrast to the Schrödinger case the wave function
description has an inherent time asymmetry with respect to Hermitian conjugation, which
lends itself to stochastic control theory problems in which a final value for the action is
specified. The wave function description leads us to the remarkable result that, for either
choice of dynamics, a complex structure is present acting on the Hilbert space of statesH.
It is shown how the choice of dynamics can be captured by the specification of this complex
structure[4,5] via its action on the (time derivative of the) wave function, and an associated
Hamiltonian operator. The existence of complex structures in the wave function formal-
ism (already present in the Schrödinger equation) for the general choice of conservative
diffusion dynamics constitutes a significant new result.

This paper is organised as follows. We begin inSection 2with an exposition of the
elements of stochastic differential geometry for non-degenerate diffusion processes on a
manifoldM that are necessary for our discussion.Section 3discusses the kinematics of dif-
fusion and introduces the action functional as an integral over a sample path of the diffusion
process, and defines a stochastic principle of least action giving rise to a relationship be-
tween the action and Lagrangian density. The main body of new results appear inSections 4
and 5. In Section 4we posit the dynamical equations in vector form and show how these can
be derived from the stochastic principle of least action.Section 5discusses the emergence
of complex structures in a wave function description of both dynamical structures, and in
this context addresses the nature of conserved energy, stationary states and the principle of
superposition.

The reader should be familiar with the basic elements of differential geometry[6], dif-
fusion theory[7] and the Ito stochastic calculus[8]. Tensorial indices shown in roman
bold type denote the coordinate basis representation, while those in plain italic are abstract
indices that serve to indicate to which space the relevant geometrical object belongs. We
adopt the Einstein summation convention throughout[9]. Indices from{i, j, k, . . . } refer to
M while those from{a, b, c, . . . }, {α, β, γ, . . . } refer to the Hilbert space of statesH.
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2. Stochastic differential geometry

We introduce the diffusion processXi
t on a manifoldM and the associated contravariant

diffusion tensorσ ij , which in the non-degenerate case has inverseσij that provides a natural
metrical structure onM. The Levi-Civita connection of this metric∇i is introduced for
the purpose of differential geometric operations, and has the simplifying property that it
annihilates the diffusion tensor. In this geometry it is natural to work with the Ito drift
of the process, whose transformation properties are tensorial with respect to(M, σij ). The
situation in this regard is contrasted with the case of the Kolmogoroff forward drift obtained
by regarding the process as existing onR

n [10]. The current treatment has the advantage
over previous work[1,2] that each geometrical operation may be expressed in the coordinate
free abstract index notation, as elucidated, for example in[11].

Consider a continuous time diffusion processXi
t on a manifoldM of dimensionn taken

to satisfy the (time independent) Ito stochastic differential equation[8]

dXi
t = βi(Xi

t)dt +
∑
I

σi
I(X

i
t)dWI

t , (2.1)

where{WI
t } are a collection ofn independent Wiener processes[8] satisfying dWJ =

δIJdt. The Wiener summation term in the contravariant diffusion tensorσij determined by
dXi

t dXj
t = σij dt1 then satisfiesσij = ∑

I σ
i
Iσ

j
I . We distinguish between two notions of

drift on the manifold as follows[10]. RegardingXi
t as a process on a coordinate patch of

R
n we have the Kolmogoroff mean forward drift[10] defined as

βi(x, t) = lim
δt→0

Et,x

[
Xi

t+δt − Xi
t

δt

]
, (2.2)

and the mean backward drift

β̃i(x, t) = lim
δt→0

Et,x

[
Xi

t − Xi
t−δt

δt

]
(2.3)

for δt > 0 in a coordinate chart{xi} that is normal with respect to the Euclidean metrical
geometryδij of R

n [9] and whereEt,x is the expectation conditional on the valuex of the
process at timet. Denoting the Levi-Civita connection ofδij by∂i, the probability densityρE
with respect to the Euclidean volume measure onR

n satisfies the Fokker–Planck equation[7]

∂ρE

∂t
+ ∂i(ρEβ

i) = 1

2
∂i∂j(σ

ijρE), (2.4)

and the corresponding backward equation

∂ρE

∂t
+ ∂i(ρEβ̃

i) = −1

2
∂i∂j(σ

ijρE). (2.5)

For a non-degenerate diffusion we writeσ ijσjk = δik, with σ := det{σij } 	= 0. In this way the
inverseσij supplies the natural metrical geometry ofM from a diffusion point of view, in

1 The absence of expectation on the left-hand side here is the feature that rules out discontinuous jump processes.
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that no extra metrical ingredient is required in the construction of a diffusion onM. In the
subsequent sections we shall work mainly with the Levi-Civita connection∇i of σ ij , whose
components are given by∇iV

j = ∂iV
j +Γ i

jkV
k with Γ i

jk = (1/2)σ ip(∂jσpk+∂kσpj −∂pσjk)

[9]. Thus∇i annihilates the diffusion tensor, which shall be a useful property in the calcu-
lations that follow. In the spirit of theσij metrical geometry it is more convenient to define
theIto forward and backward drifts in an analogous way to(2.2) and (2.3), except that{xi}
now refers to a coordinate chart that is normal with respect to the Levi-Civita connection∇i

of theσij metrical geometry. This drift quantity has the virtue that its components change in
a tensorial way under coordinate transformations. The probability densityρ (for the same
process) with respect to the invariantσ volume measure

√
σ dnxi is related to the previous

density byρE = ρ
√
σ and satisfies the covariant Fokker–Planck equations2

∂ρ

∂t
+ ∇i(ρb

i) = 1

2
σ ij∇i∇jρ, (2.6a)

∂ρ

∂t
+ ∇i(ρb̃

i) = −1

2
σ ij∇i∇jρ. (2.6b)

Observe that, since the connection∇i is designed to annihilateσ, the positioning of the
σ ij term on the right-hand side above has no effect, unlike in(2.4) and (2.5). This fea-
ture will prove useful in the calculations that follow. Comparison of the two forms of the
Fokker–Planck equation yields3

bi = βi − 1

2
√
σ
∂j(

√
σσij). (2.7)

This relationship can be re-expressed in terms of the Christoffel symbolΓ as follows. From
the identityΓ k

kj = ∂j(log
√
σ) [9] we obtain for the second term on the right-hand side

(1/
√
σ)∂j(

√
σσij) = ∂jσ

ij + σijΓ k
kj. We then defineΓ i := σjkΓ i

jk = −∂jσ
ij − σijΓ k

kj and

thus(2.7) can be written asbi = βi + (1/2)Γ i, in accordance with[2]. We deduce the
transformation law forβi from the Ito equation dXi = βi dt + dwi

t + o(dt) which implies

that dXi′ = (∂xi′/∂xi)(βi dt+dwi
t)+(1/2)(∂2xi′/∂xi∂xj)dwi

t dwj
t +o(dt). TakingEt of this

equation and using the definition(2.2) in general coordinates yieldsβi′ = (∂xi′/∂xi)βi +
(1/2)(σij)(∂2xi′/∂xi∂xj). Recalling the transformation for the components of the Christoffel
symbolΓ i′

j′k′ = P i′
i P

j
j′P

k
k′Γ i

jk −P
j
j′P

k
k′∂jP

i′
k , whereP i′

i = ∂xi′/∂xi [6,9] it follows thatΓ i′ =
(∂xi′/∂xi)Γ i − σjk(∂2xi′/∂xj∂xk). Hence the non-tensorial terms in the transformations
for the componentsβi, Γ i cancel in(2.7)so that the componentsbi transform vectorially.
Observe that for a non-degenerate diffusion onMa sufficient condition for the Kolmogoroff
and Ito drifts to coincide at a given pointP is that∂iσjk (or equivalentlyΓ i

jk) vanish there.

(The converse does not hold, however, since it is possible forΓ i to vanish with∂iσjk not
equivalent to zero.)

2 Adding these two equations yields the equation of continuity familiar from fluid dynamics[12] ∂ρ/∂t +
∇i(ρv

i) = 0.
3 The comparison in fact shows that theρ-weighted left- and right-hand sides of the equation below have equal

divergences. Since this holds for arbitraryρ independent ofb, β, σ the identity follows.
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The situation in respect of the abstract index notation can be summarised as follows (cf.
Eqs. (7.1) and (7.2) in[13]). The components of the abstract covariant derivative∇jξ

i of a
vector in the tangent space toM, ξi ∈ TM, can be expressed as

δ
j

j δ
i
i(∇jξ

i) = ∂ξi

∂xj Γ
i
jkξ

k, (2.8)

whereδii is a coordinate basis on a patch ofM andδi
i its dual. Thus from(2.1) and (2.7)we

have

dxi + 1

2
Γ i

jkσ
jk dt −

∑
i

σi
i dWi = bi dt. (2.9)

This enables us to introduce the abstract Ito differential

dxi = δii(dx
i + 1

2σ
jkΓ i

jk dt), (2.10)

and hence(2.1)becomes the abstract geometrical equation dxi = bi dt + dwi
t . The vector

βi = δiiβ
i is then a genuine tensorial object onM but one whose definition via(2.2) is tied

to the choice of a normal coordinate chart with respect to the Levi-Civita connection∂i of
the Euclidean metricδij on R

n. Henceforth in abstract index expressions, indices will be
raised and lowered withσ ij andσij , respectively, in accordance with the Einstein summation
convention.

3. Kinematics of diffusion

We begin by introducing some additional kinematic quantities that will be required in our
discussion. We define the forward and backwardgeneratorsof the processXi

t , respectively,
by

Df(t, x) = lim
δt→0

Et,x

[
f(t + δt, X(t + δt)) − f(t, X(t))

δt

]
, (3.1a)

D̃f(t, x) = lim
δt→0

Et,x

[
f(t, X(t)) − f(t − δt, X(t − δt))

δt

]
(3.1b)

for an arbitrary functionf(t, x), where, as previously,Et,x is the conditional expectation
given thatXt = x. SinceXt is taken to satisfy(2.1) we deduce from Ito’s formula[8]
applied tof(t, Xt) that these equations may be expressed in operator form asD = ∂/∂t +
bi∇i + (1/2)σ ij∇i∇j, D̃ = ∂/∂t + b̃i∇i − (1/2)σ ij∇i∇j [2]. We further define the current
and osmotic velocitiesvi, ui, respectively, according to

vi = 1
2(b

i + b̃i), ui = 1
2(b

i − b̃i). (3.2)

In our discussion of the dynamics we shall require theosmotic equation[2] which relates
the osmotic velocityui to the probability density viaui = (1/2)σ ij∇j logρ. Under ‘time’
reversalT : t → −t these quantities transform asT [bi] = −b̃i, T [b̃i] = −bi and hence
T [ui] = ui, T [vi] = −vi. (The reversal ofvi underT is in accordance with intuition since



T.R. Field / Journal of Geometry and Physics 47 (2003) 484–496 489

this velocity is identical to the Eulerian velocity field of fluid mechanics[12]; the invariance
of ui underT is consistent with the osmotic equation above.) Similarly for the generator
we haveT [D] = −D̃.

The stochastic principle of least action we shall adopt is that for a LagrangianL(t, Xi, bi)

andL(t, Xi(t)) := L(t, Xi(t), bi(t, Xi(t))) the quantity

I(t) := Et

∫ T

t

L(s,Xi(s))ds (3.3)

is stationarised with respect to variations in the forward driftbi, for fixed t, T and a fixed
initial configuration (probability density), i.e.δI = o(δbi) andδEt = 0. TheactionA is
defined in a similar way except that the conditioning is also with respect to the location on
M at a given time, i.e.

A(t, xi) := −Et,xi

∫ T

t

L(s,Xi(s))ds, (3.4)

where the sign is chosen for mathematical convenience. In both cases the integrals are taken
over individual sample paths of the stochastic process. From the “tower law” for the condi-
tional expectation[8] we have the identityEt ◦Et,xi ≡ Et and thereforeI(t) = −EtA(t, xi).
The functional variation of this relation isδI = −Et(δA) since our variational principle
holds the initial configuration fixed, so thatδEt ≡ 0. From the identity(d/dt)(Etf) ≡
Et(Df) we find that

δI(t) = Et

∫ T

t

D(δA). (3.5)

The definition ofA and the primary definition(3.1a)of the generatorD leads immediately
toDA = L, by applying the identityEt,xi(t) ◦ Et+δt,xi(t+δt) ≡ Et,xi(t). Hence the integrand
of (3.5)may be expressed as

D(δA) = δL− (δD)A = δL− δbi∇iA. (3.6)

ExpandingD this reads

∂A

∂t
+ bi∇iA+ 1

2
σ ij∇i∇jA = L, (3.7)

which at this stage of development should be regarded as a purely kinematical statement.4

Our purpose in the discussion of the dynamics below is to establish the relationship between
bi and the actionA. This is achieved by specifyingL and a stochastic principle of least
action.

4. Dynamics of conservative diffusion

The dynamics that we consider, which govern the time evolution of the forward drift of
the diffusion, are taken to be time reversal symmetric. We shall argue that in the presence

4 In Hamiltonian form, withH = bipi − L, we have∂A/∂t + (1/2)σ ij ∇i∇jA = −H(xi,∇jA).
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of a local potential there are essentially two possibilities for the dynamical structure, and in
both cases we deduce the dynamics from the stochastic principle of least actionδI = o(δbi)
for a Lagrangian equal to a certain kinetic minus a local potential termL = T − V(xi).

Given the requirement of time reversal symmetry the dynamical structures available, up
to linear combinations, are

1

2
(Db̃i + D̃bi) = −∇iV

m
(Case 1), (4.1a)

Dbi = −∇iV

m
= D̃b̃i (Case 2). (4.1b)

The dynamical symmetry underT is evident from the action ofT on (4.1a) and (4.1b),
using the identities forT derived inSection 3. Observe that the left-hand side of(4.1a)is
invariant underT, and that the second equality in(4.1b)is implied by the action ofT on the
first. Nevertheless, the overall process is time asymmetric forσ ij 	= 0, due to the presence
of the diffusive term in the Fokker–Planckequations (2.6a) and (2.6b).

Case 1. The situation we consider here constitutes a concise review of Nelson’s stochas-
tic mechanics[1,2]. We shall adopt the kinetic LagrangianT = (1/2)mbibi + (1/2)m∇ib

i

(in a physical context the parameterm has the connotation of mass). This choice of ki-
netic Lagrangian is motivated as follows. Consider the squared Ito differentialEt [dXi dXi].
Adapting the argument of Nelson5 into the abstract index notation we write dXi = bi dt +
∇kb

iW k − (1/2)δjl∂kΓ
i
jl + dwi + O(dt2), whereW k := ∫ t+dt

t
[wk(s) − wk(t)] ds. Thus

dXi dXi = bibi dt2 + 2bi dwi dt + 2∇kb
iW k dwi − δjl∂kΓ

i
jlW

k dwi + dwi dwi + o(dt2).

Taking Et of this relation we haveEt [2bi dwi dt] ≡ 0. From the independent increments
property forwi [8] we deduce, fort ≤ s ≤ r, the integral identity

Et [w
k(s) − wk(t)][wi(r) − wi(t)]

= δki (s − t) + 1
4δ

kmδjl∂j∂lσim(s − t)2 + o(s − t)2. (4.2)

Integrating this equation with respect tos and settings = t + dt we deduce the rela-
tionsEt [2∇kb

iW k dwi] = ∇ib
i dt2+o(dt2), Et [−δjl∂kΓ

i
jlW

k dwi] = −(1/2)δjl∂iΓ
i
jl dt2+

o(dt2), while contraction overi, k yields Et [dwi dwi] = ndt + (1/4)δimδjl∂j∂lσim dt2 +
o(dt2). Thus

Et [dX
i dXi] = (bibi + ∇ib

i − 1
3δ

jk∂[iΓ
i
j]k)dt2 + ndt + o(dt2). (4.3)

Using the identity for the scalar curvatureR = −2δjk∂[iΓ
i
j]k [6,9] we find

Et

[
1

2

dXi

dt

dXi

dt

]
= 1

2
bibi + 1

2
∇ib

i + 1

12
R + n

2dt
+ o(1). (4.4)

The termn/dt is the same for all possible paths and so removing this term and dividing
through by dt2 leads us to the kinetic Lagrangian stated above.6 From this choice ofL we

5 See p. 45 et seq in[2].
6 This ingenious argument is abbreviated from Nelson[2] and is originally due to Guerra (unpublished). We

neglect the scalar curvature term since in most situations of interest, e.g. the study of diffusion on spin manifolds,
R is constant and so does not affect the variational principle.
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calculate from(3.6)thatD(δA) = δbi(bi − ∇iA)+ ∇iδb
i. In expectation the final term on

the right-hand side can be expressed asEt [∇iδb
i] = −Et [uiδbi], which follows from the

osmotic equation and an integration by parts in the integralEt [f ] = ∫
ρf . Combining with

(3.2)we find

δI = Et

∫ T

t

(vi − ∇iA)δbi, (4.5)

which implies the stochastic Hamilton–Jacobi conditionvi = ∇iA. Inserting this into(3.7)
then yields thestochastic Hamilton–Jacobi equation

∂A

∂t
+ 1

2
∇iA∇iA− 1

2
uiui − ∇iu

i + V = 0, (4.6)

whereupon∇k yields the (time-symmetric) acceleration dynamics(4.1a). Observe that(4.6)
is well posed both to the future and past.

Case 2. We neglect the(1/2)∇ib
i term present in the kinetic Lagrangian of the previ-

ous case, and thus adopt the choiceT = (1/2)mbibi. Then(3.6) implies thatD(δA) =
δbi(bi − ∇iA) and so the variational principle leads us instead tobi = σ ij∇jA. Inserting
this condition into(3.7)we obtain the modified stochastic Hamilton–Jacobi equation

∂A

∂t
+ 1

2
σ ij∇i∇jA+ 1

2
∇iA∇iA+ V = 0. (4.7)

This has the appearance of atime-reversedheat equation for the action. Therefore the solu-
tion forA is determined given final data, and accordingly the situation is adapted to stochas-
tic control problems (cf.[14]). Taking∇k of (4.7) yields the first of the (time-symmetric)
vector dynamicalequations (4.1b), from which the second follows from the Fokker–Planck
equation (2.6a).

5. Wave functions and complex structures

We begin with an exposition of the concept of a complex structure acting on a real vector
space[4–6]. In terms of the discussion of wave dynamics to follow inSection 5.2this vector
space should be regarded as the Hilbert space of statesH in the wave function description.
Since the overlap between the study of complex Kähler geometry[6] and stochastic analysis
is yet to be widely appreciated, we outline the concepts necessary for our development in
some detail.

5.1. Complex structures on real spaces

LetV be a real vector space of dimensionp. Consider a real endomorphismJ of V, whose
square is minus the identity onV, thusJ2 = −id|V.7 The determinant of this equation yields
0 ≤ (detJ)2 = (−1)p and thusp = 2n for positive integern or elsep = ∞. The operator

7 In relativistic quantum theory, such a complex structureJ provides the splitting of thesingle particle Hilbert
spaceH into positive and negative frequency eigenspaces (cf.[5]).
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J is said to be acomplex structureon V. Observe that for a givenV the choice ofJ is
non-unique. There exist two quite distinct notions ofcomplexificationof a real vector space
V. First, there is the extra ingredient of a complex structureJ as above. Second, there is
complexification ofV in the sense of the mappingV → V ⊗ C = H. If we extend the
action ofJ toH by complex linearity, thenJ admits eigenspaces with eigenvalues±i (J
is diagonalisable overV ⊗ C), denotedH±, respectively. Then we have the decomposition
H = H+ ⊕H−. In this way any vectorv ∈ H can be decomposed uniquely asv = v+ +v−
in whichv± = (1/2)(v∓ iJv) are the positive and negative parts ofv. The uniqueness of this
splitting follows from decomposingv above intov± andw± so that(v−w)+ = −(v−w)−,
and applyingJ to this equation. Accordingly the action ofJ is given explicitly in terms of
positive and negative parts byJv = i(v+ − v−). The simplest example that illustrates this
idea isV = R

2 with standard basis denoted{ei}. Consider a complex structure represented

in this basis asJa
b =

(
0 −1
1 0

)
. We can express a vectorv as the sum of its positive and

negative parts in this basis according tova =
(
a

b

)
=

(
z

−iz

)
+

(
z̃

iz̃

)
, wherez = a+ ib,

z̃ = a − ib. Alternatively, with respect to the diagonal basis{e′
i} with e′

1 = (1/2)

(
1
−i

)
,

e′
2 = (1/2)

(
1
i

)
, we haveJa′

b′ = i

(
1 0
0 −1

)
and effect the decompositionva = vα⊕ṽα

′
,

vα =
(
z

0

)
, ṽα

′ =
(

0
z̃

)
so that unprimed (primed) abstract Greek indices denote the±i

eigenspaces ofJ , respectively. Complex conjugation of a vector represented in the standard
basis simply effects ordinary complex conjugation of its components. In the diagonal basis

we have insteadv =
(
z

z̃

)
, v̄ =

(
z̃∗
z∗

)
, where∗ denotes complex conjugation inC andz,

z̃ are independent complex numbers. A vectorv is said to bereal if and only if v = v̄ and
thusv ∈ V, i.e. its components with respect to the standard basis are real. In the diagonal
basis this is the condition thatz̃ = z∗, i.e. the positive and negative parts ofv are complex
conjugates of each other.

Remark 5.1. (a) The choice ofJ does not uniquely determine the mapv → z, v ∈ V since
there is rotational freedom in the basis forV. (b) The complex conjugationv → v̄ above is
distinct from thepseudo-conjugationoperationC given as follows. WriteV = U ⊕ J [U],

where dimR U = n with J =
(

0 −1n
1n 0

)
and decompose anyv ∈ V ⊗ C asv = u⊕ Ju′

with u, u′ ∈ U ⊗ C. Define the pseudo-conjugation onV ⊗ C according toCv = u − Ju′.
Accordingly,u = (1/2)(v + Cv) andu′ = (1/2)J−1(v − Cv). (c) Complex conjugation
v → v̄, v ∈ V is in general distinct from theHermitian conjugation mappingvα → ṽα

′

determined byJ , which interchanges the positive and negative parts of anyv ∈ H.

5.2. Wave dynamics

Returning to the discussion ofSection 4we provide a description of the dynamical struc-
tures(4.1a) and (4.1b)in terms of wave functions. For this purpose we introduce velocity
potentials such thatui = ∇iR, vi = ∇iS. (This is possible since the Hamilton–Jacobi
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conditions in both cases ensure thatui andvi are curl free.) In accordance with the osmotic
equation we adjust the freedom of an additive constant inR such thatρ = exp(2R). We
shall set� = 2mΣ andσ ij = Σgij for constantΣ and take∇ to be Levi-Civita with respect
to g.8

Case 1. The situation for Nelson’s stochastic mechanics can be summarised as follows.
Writing φ = exp(R + iS) we haveρ = φφ̄ and deduce from(4.6) that φ satisfies the
Schrödinger equation i�∂φ/∂t = (−�

2/2m)∇2φ + Vφ. In the abstract index Hilbert space
notation ofSection 5.1with φα ↔ exp(R + iS), φ̄α′ ↔ exp(R − iS) andφa = φα ⊕ φ̄α′

this can be expressed as

�Ja
b

∂φb

∂t
= Ha

bφ
b, (5.1)

whereHa
b represents the Hamiltonian onH.9 The real part of this equation is equivalent to

the Fokker–Planckequation (2.6a), and∇i of the imaginary part implies the acceleration
dynamics(4.1a).

Case 2. We proceed in a similar way to the above. In this case, however, we introduce
a pair of real valued wave functionsψ = exp(R + S), ψ̃ = exp(R − S), so thatρ = ψψ̃.
Then from(4.7)we deduce the pair of dynamical equations

−�
∂ψ

∂t
= �

2

2m
∇2ψ + Vψ, �

∂ψ̃

∂t
= �

2

2m
∇2ψ̃ + Vψ̃. (5.2)

If we introduceΨ =
(
ψ

ψ̃

)
, i.e.Ψa = ψα ⊕ ψ̃α′ ∈ H and a complex structureJ acting on

Ψ via J

(
ψ

ψ̃

)
= i

( −ψ̃
)

then we can re-express(5.2)as thesingleequation

−iJ
∂Ψ

∂t
=

(
�

2

2m
∇2 + V

)
Ψ. (5.3)

Alternatively taking appropriate linear combinations of(5.2)we find, in terms of the standard
basis forV of Section 5.1, that

∂

∂t
[i (ψ − ψ̃)] = Ĥ [ψ + ψ̃],

∂

∂t
[ψ + ψ̃] = Ĥ [−i(ψ − ψ̃)]. (5.4)

Thus (5.3) holds withJ [Ψ ] represented in this basis asJΨa =
(

i(ψ − ψ̃)

ψ + ψ̃

)
. Observe

incidentally that we could also write(5.2) as (∂/∂t)C[Ψ ] = ĤΨ using the conjugation
operatorC of Remark 5.1, and regardingψ as an element of the spaceU instead of the
positive eigenspaceHα. Accordingly the action of the complex structure onΨ is changed
to J [Ψ ]a = (−ψ̃, ψ), which follows from the off-diagonal representation ofJ .

8 If x ∈M has dimensionsL andt has dimensions timeT , theng is dimensionless andΣ has the dimensions
of diffusion coefficientL2T−1.

9 The vectorsφα, φ̄α′
correspond, respectively, to the familiar Dirac ‘kets’ and ‘bras’ of the ordinary quantum

theory[3].
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Kinematically, from the discussion following(3.2) we have the symmetriesT [R] = R

andT [S] = −S. Thus for Case 1T [φ] = φ̄ (so that the action ofT coincides with ordinary
complex conjugation), whereas for Case 2 we findT (ψ, ψ̃) = (ψ̃, ψ). Therefore in both
casestime reflectionT effects Hermitian conjugation of the relevant wave functions with
respect to the appropriate complex structure. The symplectic currents that occur in both
cases are kinematically equivalent and have analogous expressions in terms of the relevant
wave functions. In Case 1 the symplectic current isJi = (�/2im)(φ̄∇iφ − φ∇iφ̄), whereas
in Case 2 we haveJi = (�/2m)(ψ̃∇iψ − ψ∇iψ̃). A straightforward calculation using the
velocity potentialsR, S shows that in either caseJi = ρvi, i.e. the symplectic current
constructed from the wave functions coincides with the (densitised) probability current of
the underlying stochastic theory.

5.2.1. Energy conservation
In Case 1 we have the ordinary quantum mechanical Hamiltonian operatorĤ(1) =

−(�2/2m)∇i∇i + V whose operator expectation is prescribed by〈Ĥ(1)〉 = φ̄αH
α
(1)βφ

β =∫
φ̄Ĥ(1)φ. Expressingφ in terms of the velocity potentialsR, S we see that stochastically

this energy is equivalent to(1/2)Et [vivi + uiui] + Et [V ], which is conserved by virtue of
the Schrödingerequation (5.1). On the other hand, for Case 2 we have the Hamiltonian
operatorĤ(2) = (�2/2m)∇i∇i + V and define its expectation in the wave function formal-
ism analogously as〈Ĥ(2)〉 = ψ̃αH

α
(2)βψ

β = ∫
ψ̃Ĥ(2)ψ. Expressingψ, ψ̃ in terms of the

velocity potentialsR, S we deduce that

〈Ĥ(2)〉 = 1
2Et [v

ivi − uiui] + Et [V ], (5.5)

and from the wave function dynamicalequation (5.3)this energy expression is also con-
served in time. (Note, however, that the contribution involvingui, vi is not positive definite.)
Contrasting the two cases we observe the following ‘duality’ principle, that under expec-
tation Et the kinetic action of Case 1 is equal to the conserved kinetic energy of Case 2,
i.e.

Et [T(1)] = 〈Ĥ(2) − V 〉. (5.6)

(If instead we required the two cases to be dynamically equivalent, fordistinct poten-
tials V(i), then comparison of(4.6) and (4.7)shows that the required condition isV(2) =
V(1) − �∇iu

i − muiui. This renders the conserved energies in both cases equal.) The
reader should compare this result with p. 75 of[2] for a discussion of the Yasue versus
Guerra–Morato formulations of Nelson’s stochastic mechanics. In the Guerra–Morato for-
mulation the forward drift velocity is varied with the initial configuration held fixed, and
the process is required to be Markovian; for the non-Markovian case Yasue considers an
action principle where the path is varied with fixed initial and final endpoints. Both of these
stochastic principles of least action lead to the same dynamical law for the stochastic mean
acceleration, which is equivalent to Schrödinger’s equation. For a free particle the Yasue
action isIY = Et,T

∫ T

t
(1/2)(vjvj + ujuj)ds, as compared to the Guerra–Morato action

which from (4.4) is IGM = Et

∫ T

t
(1/2)(vjvj − ujuj)ds. Thus as Nelson[2] remarks,

the osmotic energy(1/2)ujuj appears as kinetic energy in the Yasue formulation but as
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potential energy in the Guerra–Morato formulation. (Compare also[15] for a discussion of
energy conservation laws within the context of Nelson’s stochastic mechanics.)

5.2.2. Stationary states
The space of stationary states in Case 1 should be familiar from the standard quantum

theory[3,16]. By comparison in Case 2 the situation is essentially the same in this respect
except for the transformation of the potentialV → −V , as can be seen by separation of
variables according toψn = exp(−Ent)χn(x), ψ̃n = exp(Ent)χn(x). Thus for a quadratic
potentialV = −xixi,M ∼= R

3 the stationary states of(5.2) can be inferred immediately
from the corresponding situation for the quantum harmonic oscillator with its creation and
annihilation operators[3]. Accordingly the space of coherent states can be constructed in
an analogous way[5].

5.2.3. Superposition principles
Both dynamical structures exhibit interference, but of a different character. In Case 1 the

interference should be familiar from ordinary quantum theory and is sinusoidal in essence.
By comparison in Case 2 the interference also arises at the level of the wave functionsψ, ψ̃,
since(5.2)are linear. However, in this case the interference ishyperbolicin nature. Consider
solutionsφj = exp(Rj + iSj) of (5.1), andψj = exp(Rj + Sj), ψ̃j = exp(Rj − Sj) of
(5.3), with probability densitiesρj given byφjφ̄j andψjψ̃j, respectively. In Case 1 a linear
superpositionφ3 = φ1 + φ2 yields a probability density function for the superposed state

ρ3 ∝ ρ1 + ρ2 + 2 exp(R1 + R2) cos(S1 − S2). (5.7)

A similar calculation in Case 2 yields

ρ3 ∝ ρ1 + ρ2 + 2 exp(R1 + R2) cosh(S1 − S2). (5.8)

Thus both cases exhibit interference via the appearance of the third term in(5.7) and (5.8).
The interference is circular in Case 1 and hyperbolic in Case 2, with respect to the velocity
potentialS for the fluid currentvi. It is the circular interference that leads to the fringes
encountered in ordinary quantum mechanics and which also appear, albeit in hyperbolic
form, for the second case of the dynamical structure.
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